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TECHNICAL MEMORANDUM NO. 1212

ON THE THEORY OF THE LAVAL NOZZLE*

By S. V. Falkovich

In the present paper, the motion of a2 gas in a plane~parallel
Leval nozzle in the neighborhood of the transition from subsonic to
supersonic velocities 1s studied. This problem was first consid-
ered by Meyer (reference 1) who sought to obtain the velocity poten-
tial in the form of a power series in the coordinates x,y of the
flow plane. The case of the nozzle with plane surface of transi-
tion from subsonic to supersonic velocities was further considered
in a paper by S. A. Christianovich and his coworkers (reference 2).
For computing the supersonic part adjoining the transition line,
Christianovich expanded the angle of inclination of the velocity
end a specific function of the modulus of the velocity in the power
series, using the velocity potential and the stream function as the
unknown variebles. In a recently published paper, F. I. Frankl
(reference 3), applying the hodogreph method of Chaplygin, under-
took a detailed investigation of the character of the flow near the
line of transition from subsonic to supersonic velocities. From
the results of Tricomi's investigation on the theory of differ-
ential equations of the mixed elliptic-hyperbolic type, Frankl
introduced as one of the independent variables in place of the
modulus of the velocity, a certain specially chosen function of
this modulus. He thereby succeeded in explaining the character of
the flow at the point of intersection of the tramsitlon line and
the axis of symmetry (center of the nozzle) and in studying the
behavior of the stream function in the nelghborhood of this point
by separating out the principal term having, together with its
derivatives, the maximm value as compared with the corresponding
corrections. This principal term is represented in Frankl's paper
in the form of a linear combination of twe hypergeometric func-
tions. In order to find this linear combination, it is necessary
to solve a number of boundary problems, which results in a complex
analysis.

In the investigation of the flow with which this paper is
concerned, & second method is applied. This method is based on
the transformation of the equations of motion to a form that may
be called canonicel for the system of differential equetions of

*¥"K Teorii Sople Lavala."” Prikladnays Matematike i Mekhanika.
Vol. 10, no, 4, 1946, pp. 503-512.
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the mixed elliptic-hyperbolic type to which the system of equations
of ,the motion of an ideal compressible fluid refers. By studying
the behavior of the integrals of this system in the neighborhood of
the parabolic line, the principsl term of the solution is easily
separated out in the form of a polynomial of the third degree. As
a result, the computation of the transitional part of the nozzle is
considerably simplified.

1. Fundamental equations. - The equations of the two-dimensiomal,

steady, nonvortical motion of an ideal gas in the absence of friction
and heat conductivity have the form

g—z-%=o ég‘-;-“l+§§§el=o (1.1)
0]

W X p_ X
2 ¥ p

(1.2)

vhere u and v are the components of the velocity along t
end y axes, p is the demsity, p 1s the pressure, W =Au2 + vo

is the magnitude of the velocity, X = cp/cv, pp end p, are

the density and pressure of the gas at rest.
Equations (l.l) represent the condition of the absence of vor-

tices end the equation of continuity. Equation (1.2) is Bernoulli's
equation for adiasbatic motion for which

K .

L = '2' (103)
Po \Po

For the velocity of sound a

2_v 2
a X . (1.4)

From equations (1.2), (1.3), and (1.4), the following equation
is derived:

o=po<l-x—-;—l—w:— (1.5)
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(aoz = Xpo/ Po is the velocity of sound in the gas st rest) from
which

da [ Po Po W
L (00K 1.6
aw p) P o2 (1.6)

From equation (1.1), it follows that there exist two functions:
the velocity potential o(x,y) and the streem function V¥ (x,y),
which are determined by the equations

dp = udx + vdy ¢p=-§—(- vdx + udy) (1.7)
0

In place of the velocity components u and v, the polar
coordinates, setting u=Wcos 8 and v =W sin 8, where 6 1is
the angle between the velocity vector and the x axis,are sub-
stituted. Equations (1.7) are solved for dx and 4y, thus

obtaining

o
cos 8 0 sin 6
ox = 22 dp - o Ty Ay
_gin 6 PO cos 8 1.8
&y = S5 dop+ — = Ay (1.8)

If x and y as well as W and 6 are considered as func-
tions of the variables ¢ and VY, then dx and dy must be
total differentials, so that the following equations must hold:

Q f[cos 8) _ _ 3 (PO sin 6 d (sin 6\ _ 3 (PO cos @
a\p<w>" S \ p w) &(w)"a‘cp<p w>

In carrying out the differentiation,in taking account of the
fact that according to equation (1.5) in which po/p depends

only on the magnitude of the velocity W, and in making use of
equation (1.6), the following equations are obtained:

3  cos oW _ _Po 36 _ Po sin 8 W2\ oW
sineg‘p+ W S\p=+p°°59§'§, 5 T < )

coseae--—— = - —
W v
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/B By solving these equations for the derivatives BB/Bq: and
38/,

0 W _ 36 PO al-W2 W
%-Bﬁﬁgb_o 'a_\]-l+_5-w3 g&)=o (1'9)

This system of differential equations will be of the elliptical
type 1f the magnitude of the wvelocity W 4is less than the velocity
of sound and will be of the hyperbolical type for supersonic veloclties.

The new function 1 1is considered instead of velocity W and
is related to W 1in the following manner (reference 3):

* o \2/3
= <—‘;3f —# aw) (1.10)
W

Equations (1.9) then assume the form

o 36 _ on , _1 938 _
a\l/ + b('ﬂ) ga)_ (9] N % -_b—(-ﬁ-)- E-‘I‘ 0 (1-11)
where
2
b(n) = pp—o 2 ;’2 (1.12)
na

as a result of (1.10), is a function of the varisble 7.

Equations (1.11) are the fundsmental equations for the inves-
tigation of two-dimensional, nonvortical motion of a gas when the
velocity of the flow passes from subsonic to supersonic velocity.
In some ceses, 1t 1s more convenient in these eguations to sub-
stitute 6 and 7 as the independent variables and tske ¢ and
V as the required functions. After this transformation, equa-
tions (1.11) assume the form

)
§+b(n)§%=0 %-nb(n)a%gf’

2. Investigation of variable 1. - The varisble 1 deter-
mined by equation (1.10) is considered in more detsil. For

0011
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computing the integral entering this equeation, the square of the
velocity of sound is

2 _k+l 2 k-1 wz (2.1)

In substituting the preceding equation in (1.10)

[1- an/s W 2 _x+l
<f 1-22 /n2 > <E*-_>\’h =X'1> (2.2)

The integration results in
T 1) 2/3

h
2 3
1o, 22 1 enn SN
n2-N h2-)
M = ’ (2.3)
1-? 1-)22
\/ e h\/;z_xaj
K —

By expanding equation (2.3) in a series

2/3 2 2/3
n =<99—1—2—'H> 1-2 [1+o(1->\2):] (2.4)

2 Y

Lo
E

From equation (2.3), it follows, that 7> 0 for A< 1 and
Nn<0 for A>1l, that is, in the plane of the variables 6 and
N, the region lying in the upper half-plane will correspond to the
region of subsonic wvelocities and the region lying in the lower
half-plane will correspond to the supersonic velocities. The line
of transition from subsonic to supersonic velocity will correspond
to the line 7 = 0, +that i1s, the axis of abscissas. From equa-
tion (1.10), the value of the velocity W = O in the plane 8,y
corresponds to an infinitely distant point. For A > 1, egua-
tion (2.3) assumes the form

2/3 2 2 /3
<> <h arc tg b 12 - arc tg h 7\2'12>2 (2.5)
h -A

AZ- ¥

The characteristics in the plane of the hodograph of the
velocity for two-dimensional, nonvortical motion of the gas are
known as epicycloids (fig. 1), the equations of which are (refer-
ence 4).
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2 2
6 =Cs <P arc tg */AEZEE - arc tg h A2‘12.>
ne_ X nZ. X

Because for e point transformation characteristics go over
into characteristics, the following equations of the character-
istics in the plane of the variasbles € and 7 are found by using

equation (2.5):
6 = :!:-:— (-'q)S/a +C (2.86)

from which it follows that the characteristics assume the form of
- semicubical parabolas with the cusps on the axis of abscissas
(fig. 2).

3. Differential equations of motion of a gas in neighborhood
of transition line. - The flow in & Laval nozzle near the line of
transition from the subsonic to the supersonic velocities is con-
sidered. This line is hereinafter deslgnated the sound line.

If a straight line perpendicular to the axis of symmetry of
the nozzle is directed away from the axisg, it will intersect the
streamlines with constantly Increesing curvatures end will there-
fore encounter particles of the ges having constantly increasing
velocity. The sound line will therefore be a curve that is con-
vex toward the supersonic velocitiesl with vertex on the axis of
symnetry (fig. 3). The point of intersection of the sound line
with the axis of symmetry is, according to Frankl, denoted as the
center of the nozzle.

In the plane of the variables ¢ and VY, the region of flow
is trensformed into a strip the width of which 1s determined by
the amount of ges flowing through the nozzle (fig. 4).

The point of origin of coordihates in the o,{ plane cor-
responds to the center of the nozzle 1n the flow plane.

The determination of the flow reduces to finding two functions
n=n(p,¥) and 6=6(wp,V)} that satisfy equations (1.11). Because
the flow is to be symmetrical with respect to the streamline
¥ = 0, it is necessary that the required functioms satisfy the
conditions

lyhen the streamlines have points of zero curvature, the sound
line will be a straight line perpendicular to the axis of symmetry;
this case was considered by S. A. Christianovich (reference 2).

1100
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(o) = nlo-y) 8(qp, V) = - 6(p-V) 7(0,0) =0
(3.1)

which are based on equations (2.2).

The solution of equation (1.1l), in the form of a power series
in the variables ¢ and V¥, takes into account equations (3.1)

2 2 2
N =80 + &8P +azb + a4qp + agpw oo e

from which it follows that if the flow in the neighborhood of the
origin of coordinates is considered, that 1s, if @ and V are
assumed to be small magnitudes, the following equations may be
obteined from equation (3.2):

n = 0(®) 6 = o(pV) %3 = 0(¥)
%fp = o(V) g—:lp = 0(1) %‘I’; = 0() (3.3)

With the use of equation (2.1) and the notations introduced in
equations (2.2), equation (1.12) for the function b(n) may be

reduced to the form
b(n) = 39/\/ BQ-x)
P \/(n2-»2)n

In accordance with equation (2.4), the following equation is derived:

k-1
) = 2 )™ = () ey’

In taking account of the order of smallness of sll terms
entering equations (1.11), it is concluded that near the origin
of coordinates the system of equations (1.1l) may be replaced by
the following equations:
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o) o8 _ d 1 06 _
§3+b(o)?cp_o “3&'—(—”0?&‘0
By setting b(0)¥ =¥, the final result is
d o6 o 8
5%1-5&:0 “a‘:};'&‘y"o (3.4)

vhere, for simplicity, the bar over Y bhas been dropped.

4. Investigation of flow in nelghborhood of center of nozzle. -
It is evident that the functioms

3 2
A A
6 = Achw- 5 \[J3 N = AP - S Ve (4.1)

where A is an arbitrary constant, are integrals of the system of
equations (3.4), and satisfy conditions (3.1).

The significance of the constant A will be explained. From
the second equation (4.1}, % = Ap along the exis of symmetry of
the nozzle (V¥ = 0). Differentiation results in

Furthermore, by using successively equations (1.10) and (2,1)
ap 1 f[a2-we __hay [ 158

aw = aW M A '\/n(hz_kz)

Morecver, along the line W =0

Hence, for A the following relation is obtained:

/ 5 T \1/3
~{-B JI-x ou) __ (X+1)  (du
), R, o
y=0

y=0
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where to obtain the last result, equation (2.4) was used.

The value of A is thus proportional to the value of the
derivative of the velocity at the center of the nozzle.

It is assumed that du/dx> O so that A will be a negative
quantity.

Along the sound line, 1 = 0. Hence, according to the second
equation (4.1), the following equation of the gound line is
derived:

cp::E\p (4-3)

that is, in the plane o,V¥, the sound line will be a parabola.

From equation (3.4), the differential equation of the char-
acteristics has the form
2
¥
avy

By substituting the value of 7 from equation (4.1)
.dﬁz =..’A‘2l"2._A
ay 2 @
In the integration of this equation, set
£
Acp=2—-xzy2 AY = x
The equation then assumes the form
‘ 2
1-2y%-2xy &) = or 1222y L -2y
dx dx
After separating the varisbles and integrating, the following

equations of the characteristics are obtained:

x(7+1)%/% (27-1)*° - ¢ 2(3-1)2/3 (231)*/® - ¢
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In order to obtain the characteristics passing through the
origin of coordinates, set C = 0. Thus the variables ¢ and YV
become

AY2 I\ (4.4)

© == ® ="

Hence, the characteristics passing through the origin of coor-
dinates in the o, plane are parabolas tangent to each other at
this point and tengent to the sound line (fig. 4). The origin of
coordinates will therefore be a singular point of the integrals of
equations (3.4) determining the flow in the nozzle.

In considering the character of this singularity, it is evi-
dent from figure 4 that the characteristics and the sound line
divide the neighborhood of the center of the nozzle into six
regions. It shall be investlgated how the neighborhood of the
center of the nozzle is transformed in the plane of the variables 8
and 17 by the integrals of equation (4.1). By eliminating from
equation (4.1) the varisble ¢, the following cubical parabola is
used in determining the stream function:

ANS « 3aqy - 30 = 0 (4.5)

This equation has one resl root if its discriminant

8 = 96%/4 + n° > 0 and three real roots if & < 0. Because the

point (¢ =0, ¥ = 0) corresponds in equation (4.1) to the
point (6 =0, n = 0), the equations of the characteristics cor-
responding to equations (4.1) are in accordance with equation (2.8).

8 42 3
479-1-'I]===0

Thus reglons I, II, and III of the plane are transformed into the
same region of the plane @,7 lying between the chBracteristics

6 = i% (-n)>/2.

Furthermore, the streamlines ¥ = £ g correspond, as seen
from equation (4.5), to the straight lines in the 6,n plane.
2.2

N - S
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The trensformation of the neighborhood of the nozzle in the
6,1 plane will thus have the form of the folded surface shown in

figure 5. The corresponding regions in figures 4 and 5 are denoted
by the same numbers.

In order to compute the streamlines in the flow plane, equa-
tions (1.8) are used in which dy is set equal to O, after which
they assume the form

cos 0O sin 6
x =y de O = =5 9@

By substituting for 6 1its value from equations (4.1), the
magnitude of the velocity W 1s, according to equation (1.10), a
function of the variable 1. Thus along the streamlines V¥ = %gq

3.3
.1 a3g3 2) " (é_:L_2>
dx-mcos<5 - A%qo)dop dy_d:m)-sin 3 A”qp)dop

Integration results in

2 3 W33 5
Jmcos -—q'-s -Aq_c;)dcp

M
]

y

o)
+ 1 sin ("fﬂi + A2 + H (4.6)
wm) 3 e '
where H is the width of the nozzle at the critical section.

In equations (4.6), set according to equations (4.1)

2 2
n=Ap- L q

The computation of the integrals in equation (4.6) reduces,
evidently, to the computation of the two integrals of the type

®Q
2 2
cos A sin A“qep
Il-j'—wn'j_quq’ 12=[ —(_)_LWT] dw
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with the aid of which x and y are expressed as follows:

33 33 3.3 3,3
=Ilcosé-39-+IzeinA—39- y=i<Izsin-‘A‘—59-—-Ilcos-%ﬂ—>

(4.7)

5. Nozzle with surface of weaek discontinulty. - The case in
which weak discontinuities are formed along the Mach lines issuing
from the center of the nozzle is here considered. For this inves-
tigation, it is necessary and sufficient that the derivative
(du/ax) y=0 Possess a discontinuity at the cemter of the nozzle

(reference 3). It is assumed that both values Baujax)y=d] Xt and
B%u/Bx) =d] are positive.
y x=-

From equation (4.1), it is evident that the magnitude A will
have the value A = Ay in the regions VI, V, and IV (fig. 4) and

the value A = A2 in the region III where, according to equa-
tion (4.2), A1 <0 and A, <O.

From equations (4.1), it is concluded that in the regioms VI,
V, and IV

A3 A
6 = a %V - 2 v° N =Ap - 2 V2 (5.1)
and for region III
AsS A2
6 = %oy - 2 y5 N = Agep - -2 (5.2)

According to equations (4.4}, the equations of the character-
istics separating the regions IV and V from regions I and II and
the equations of the characteristics separating regions I and IT
from region III have the forms

Ay a2
i =- T (5.3)

Substituting the first of these equations in equations (5.1)
and the second in equations (5.2)

llom,



o1

NACA TM No. 1212 13

=TI =7 P® =T .
Aol
6 =« % a3 N o= - AR ©= - —35— (5.5)

In order that the flow in the nozzle has no discontinuities,
it is necessary to determine 6 and 7% in regions I and II from
equations (3.4) in such a manner that the characteristics condi-
tions, equations (5.4) and (5.5), are satisfied. 1In order to
integrate the system, equations (3.4), set

n =f<¢%-> Y2 6 =s<\p%> = (5.6)

where f and g are functions to be determined.

For this substitution, equations (3.4) are transformed into
a system of ordinary differential equations with the independent
variable t = w/Wz

2f-2tf'-g' = 0O Pf'+3g-2tg' = 0O (5.7)
By the elimination of G

(4t - (£ + 4t2) £1] (5.8)

w0l

g:

By differentiating equation (5.8) and substituting the result in
the first equation (5.7), a differential equation of the second
order for determining f 1s obtained

(42 + £) £" + £12 _ 2tf' + 2f = O (5.9)

From equations (5.8), (5.4), and (5.5), it follows that the
boundary conditions for the function f will be

A Ay A
f = - = = e = - = - — .
T for t=< £ Ap for t > (5.10)

In order to integrate equation (5.9), it is written in the form
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G2) -0

(The solutions 2tf' - £ =0, that is, f = ¢/t which do not
‘'satisfy equations (5.10) are eliminated.) In carrying out the
quadrature

£re2t _ 1 p_ 1 L 2ct
ZEE-F 2oy O° T T E(E-eny | t-cq

that is, the iIntegration of the linear egquation results in

£ = 4cqt - Bcl2 + ¢ /BTcy (5.11)

The boundery conditions, equations (5.10), which the obtained
solution equation (5.11) must satisfy, have the form: £ = £y for

t = tl and f = f; for t = tz where it 1s easily seen from
equation (5.10) that the points (%, £y) and (tp, £3) 1lie on the
parabole f = -4t° and that t)< O and tp > 0. Hence, in order

to satisfy the boundary conditions, it 1s necessary from the family
of parabolas equation (5.11l) to choose the parabola passing through
(t1, £3) and (tp, f£3). Upon satisfying these conditions

tq Zety tortn? 2 16(ty-t2)2 (y42t5)% (2t) + t5)?

c1=- 62—
3{ty+ tp) 27(ty+tp)>

It 1s necessary that along a streamline the velocity in the
flow direction should increase monotonically, that is, that 10
should decrease monotonically. Because 1 = according to
equation (5.6), f£'< O must be in the range t3 <t <ty. In
order to obtain this result, it is necessary that cp < 0. This
condition is possible only for 2t; + tz <O and %3 +2t, >0
when in accordance with equations (5.10), the following condition

1s obtained
A

1
<A <5

for which a flow without discontinuity is possible.

Trenslated by S. Reiss
Natlonal Advisory Committee
for Aeronautics.
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Figure 1. Figure 2.




